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The problem

Non-ergodic ground-motion models [Lavrentiadis et al. 2022]
estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance

Gaussian process modeling provides uncertainty quantification

Seismic hazard at nuclear power plant locations
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Gaussian process regression

Given dataset D = {(xi, yi)}Ni=1, learn residual yi = f(xi)

Gaussian process (GP) modeling f ∼ GP(µ(·),K(·, ·))

Use closed-form posterior predictions

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Direct computation scales as O(N3), limiting data size (104)
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Matérn kernel functions

Matérn family of kernels with smoothness ν and length scale ℓ

ν = 1/2 corresponds to the exponential kernel ψ2 exp(−r/ℓ)

ν = ∞ to the squared exponential kernel ψ2 exp(−r2/(2ℓ2))



Kernel function

Use kernel

c1(tE) + c2(tS) +X3c3(tE , tS) + [∆R · cca(tC)] + δW + δB

where
• c1 models earthquake interactions
• c2 models site (receiver) interactions
• X3 is the geometric scaling spreading
• c3 models the interaction between earthquakes and sites
• ∆R is a cell path distance array
• cca models cell-specific path attenuation
• δW is a noise nugget
• δB is noise shared within the same earthquake event



Modeling overview

Pick (parametric) class of kernel functions

Learn hyperparameters (MLE, full Bayesian, kernel flows, . . . )

Make predictions



What do we need?

(log-)Likelihood, posterior statistics

−2 log η(y) = logdet(Θ) + y⊤Θ−1y +N log(2π)

E[yPr | yTr] = ΘPr,TrΘ
−1
Tr,TryTr

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Log determinant, inversion

Accelerated with Cholesky factor Θ = LL⊤

Seek sparse Cholesky factor for dense covariance matrix
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Statistical Cholesky factorization

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ−1)

−Li,j

Lj,j
=

Cov[yi, yj | yk>j,k ̸=i]

Var[yj | yk>j,k ̸=i]

Conditional (near)-independence ⇔ (approximate) sparsity
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Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points
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Cholesky factorization recipe

Implied procedure for computing LL⊤ ≈ Θ−1

1. Pick an ordering on the rows/columns of Θ
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors



Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi
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Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d

(
N
ϵ

))
with O

(
N logd

(
N
ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]
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Geometric dependence

Screening effect motivated by geometric considerations

Maximin ordering worse than random for spatial dimension ≥ 4

Nearest neighbors unclear for paths

Quick fix: correlation distance

dist(p, q) :=
√

1− |ρ|

ρ(p, q) :=
k(p, q)√

k(p, p)k(q, q)
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Towards geometry-free Cholesky factors

RPCholesky [Chen et al. 2023] + random ordering

RPCholesky + nearest neighbors + random candidate sets

Conditional selection sparsity pattern [Huan et al. 2023]

Automatic interpolation between low rank/sparse



Summary

Non-ergodic earthquake models with Gaussian processes

Efficient computation with sparse Cholesky factors

Implemented in Julia, scale to HPC/supercomputers

Project website and additional resources can be found at
https://kolesky.cgdct.moe

https://kolesky.cgdct.moe


Thank you!
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Kernels on paths

Integral of a Matérn kernel k(x,x′)

If f ∼ GP(0, k), then define f̃ =
∫ 1
0 f(x+ t(x′ − x)) dt

Linear transformation of a GP is also a GP

It has covariance

k̃(x,x′,y,y′) =

∫ 1

0

∫ 1

0
k(x+ t(x′ − x),y + s(y′ − y)) dt ds

which creates “paths” in the 2-d input space.
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