Scalable Gaussian processes for non-ergodic earthquake models

Stephen Huan

https://cgdct.moe

SURF Summer Seminar Day 2023

Collaborators

Houman Owhadi, Caltech

Greg Lavrentiadis, Caltech Yifan Chen, Caltech Pau Batlle, Caltech

Collaborators

Florian Schäfer, Gatech

Overview

Introduction

Gaussian process modelling

Sparse Cholesky factorization

Conclusion

Non-ergodic ground-motion models [Lavrentiadis et al. 2022] estimate the probability an earthquake exceeds a fixed intensity

Non-ergodic ground-motion models [Lavrentiadis et al. 2022] estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance

Non-ergodic ground-motion models [Lavrentiadis et al. 2022] estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance

Gaussian process modeling provides uncertainty quantification

Non-ergodic ground-motion models [Lavrentiadis et al. 2022] estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance

Gaussian process modeling provides uncertainty quantification

Seismic hazard at nuclear power plant locations

Given dataset
$$\mathcal{D} = \{(oldsymbol{x}_i, y_i)\}_{i=1}^N$$
, learn residual $y_i = f(oldsymbol{x}_i)$

Given dataset $\mathcal{D} = \{({m{x}}_i, y_i)\}_{i=1}^N$, learn residual $y_i = f({m{x}}_i)$

Gaussian process (GP) modeling $f \sim \mathcal{GP}(\mu(\cdot), K(\cdot, \cdot))$

Given dataset $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$, learn residual $y_i = f(\boldsymbol{x}_i)$

Gaussian process (GP) modeling $f \sim \mathcal{GP}(\mu(\cdot), K(\cdot, \cdot))$

Use closed-form posterior predictions

$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \boldsymbol{\mu}_{\mathsf{Pr}} + \Theta_{\mathsf{Pr},\mathsf{Tr}}\Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1}(\boldsymbol{y}_{\mathsf{Tr}} - \boldsymbol{\mu}_{\mathsf{Tr}})$$
$$\mathbb{C}\mathrm{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}}\Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1}\Theta_{\mathsf{Tr},\mathsf{Pr}}$$

Given dataset $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$, learn residual $y_i = f(\boldsymbol{x}_i)$

Gaussian process (GP) modeling $f \sim \mathcal{GP}(\mu(\cdot), K(\cdot, \cdot))$

Use closed-form posterior predictions

$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \boldsymbol{\mu}_{\mathsf{Pr}} + \Theta_{\mathsf{Pr},\mathsf{Tr}}\Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1}(\boldsymbol{y}_{\mathsf{Tr}} - \boldsymbol{\mu}_{\mathsf{Tr}})$$
$$\mathbb{C}\mathrm{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}}\Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1}\Theta_{\mathsf{Tr},\mathsf{Pr}}$$

Direct computation scales as $\mathcal{O}(N^3)$, limiting data size (10⁴)

Matérn kernel functions

Matérn family of kernels with smoothness ν and length scale ℓ

u = 1/2 corresponds to the exponential kernel $\psi^2 \exp(-r/\ell)$

 $\nu=\infty$ to the squared exponential kernel $\psi^2\exp(-r^2/(2\ell^2))$

Kernel function

Use kernel

 $c_1(t_E) + c_2(t_S) + X_3c_3(t_E, t_S) + \left[\Delta R \cdot c_{\mathsf{ca}}(t_C)\right] + \delta W + \delta B$

where

- c_1 models earthquake interactions
- c₂ models site (receiver) interactions
- X₃ is the geometric scaling spreading
- c₃ models the interaction between earthquakes and sites
- ΔR is a cell path distance array
- c_{ca} models cell-specific path attenuation
- δW is a noise nugget
- δB is noise shared within the same earthquake event

Modeling overview

Pick (parametric) class of kernel functions

Learn hyperparameters (MLE, full Bayesian, kernel flows, ...)

Make predictions

(log-)Likelihood, posterior statistics

$$-2\log \eta(\boldsymbol{y}) = \operatorname{logdet}(\Theta) + \boldsymbol{y}^{\top} \Theta^{-1} \boldsymbol{y} + N \log(2\pi)$$
$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \boldsymbol{y}_{\mathsf{Tr}}$$
$$\mathbb{C}\operatorname{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \Theta_{\mathsf{Tr},\mathsf{Pr}}$$

(log-)Likelihood, posterior statistics

$$-2\log \eta(\boldsymbol{y}) = \operatorname{logdet}(\Theta) + \boldsymbol{y}^{\top} \Theta^{-1} \boldsymbol{y} + N \log(2\pi)$$
$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \boldsymbol{y}_{\mathsf{Tr}}$$
$$\mathbb{C}\operatorname{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \Theta_{\mathsf{Tr},\mathsf{Pr}}$$

Log determinant, inversion

(log-)Likelihood, posterior statistics

$$-2\log \eta(\boldsymbol{y}) = \operatorname{logdet}(\Theta) + \boldsymbol{y}^{\top} \Theta^{-1} \boldsymbol{y} + N \log(2\pi)$$
$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \boldsymbol{y}_{\mathsf{Tr}}$$
$$\mathbb{C}\operatorname{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \Theta_{\mathsf{Tr},\mathsf{Pr}}$$

Log determinant, inversion

Accelerated with Cholesky factor $\Theta = LL^{\top}$

(log-)Likelihood, posterior statistics

$$-2\log \eta(\boldsymbol{y}) = \operatorname{logdet}(\Theta) + \boldsymbol{y}^{\top} \Theta^{-1} \boldsymbol{y} + N \log(2\pi)$$
$$\mathbb{E}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \boldsymbol{y}_{\mathsf{Tr}}$$
$$\mathbb{C}\operatorname{ov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} \Theta_{\mathsf{Tr},\mathsf{Pr}}$$

Log determinant, inversion

Accelerated with Cholesky factor $\Theta = LL^{\top}$

Seek sparse Cholesky factor for dense covariance matrix

Statistical Cholesky factorization

Cholesky factorization \Leftrightarrow iterative conditioning of process

$$\begin{split} L &= \operatorname{chol}(\Theta^{-1}) \\ - \frac{L_{i,j}}{L_{j,j}} &= \frac{\mathbb{C}\operatorname{ov}[y_i, y_j \mid y_{k > j, k \neq i}]}{\mathbb{V}\operatorname{ar}[y_j \mid y_{k > j, k \neq i}]} \end{split}$$

Statistical Cholesky factorization

Cholesky factorization \Leftrightarrow iterative conditioning of process

$$L = \operatorname{chol}(\Theta^{-1})$$
$$-\frac{L_{i,j}}{L_{j,j}} = \frac{\mathbb{C}\operatorname{ov}[y_i, y_j \mid y_{k>j, k\neq i}]}{\mathbb{V}\operatorname{ar}[y_j \mid y_{k>j, k\neq i}]}$$

Conditional (near)-independence \Leftrightarrow (approximate) sparsity

Screening effect

Conditional on points near a point of interest, far away points are almost independent [Stein 2002]

Screening effect

Conditional on points near a point of interest, far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points

Cholesky factorization recipe

Implied procedure for computing $LL^{\top} \approx \Theta^{-1}$

- 1. Pick an ordering on the rows/columns of Θ
- 2. Select a sparsity pattern lower triangular w.r.t. ordering
- 3. Compute entries by minimizing objective over all factors

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

(Reverse) maximin ordering [Guinness 2018] selects the next point x_i with largest distance ℓ_i to points selected before

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

$$L \coloneqq \operatorname*{argmin}_{\hat{L} \in \mathcal{S}} \mathbb{D}_{\mathrm{KL}} \Big(\mathcal{N}(\mathbf{0}, \Theta) \ \Big\| \ \mathcal{N}(\mathbf{0}, (\hat{L}\hat{L}^{\top})^{-1}) \Big)$$

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

$$L \coloneqq \operatorname*{argmin}_{\hat{L} \in \mathcal{S}} \mathbb{D}_{\mathrm{KL}} \Big(\mathcal{N}(\mathbf{0}, \Theta) \ \Big\| \ \mathcal{N}(\mathbf{0}, (\hat{L}\hat{L}^{\top})^{-1}) \Big)$$

Efficient and embarrassingly parallel closed-form solution

$$L_{s_i,i} = \frac{\Theta_{s_i,s_i}^{-1} \boldsymbol{e}_1}{\sqrt{\boldsymbol{e}_1^\top \Theta_{s_i,s_i}^{-1} \boldsymbol{e}_1}}$$

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

$$L \coloneqq \operatorname*{argmin}_{\hat{L} \in \mathcal{S}} \mathbb{D}_{\mathrm{KL}} \Big(\mathcal{N}(\mathbf{0}, \Theta) \ \Big\| \ \mathcal{N}(\mathbf{0}, (\hat{L}\hat{L}^{\top})^{-1}) \Big)$$

Efficient and embarrassingly parallel closed-form solution

$$L_{s_i,i} = \frac{\Theta_{s_i,s_i}^{-1} \boldsymbol{e}_1}{\sqrt{\boldsymbol{e}_1^\top \Theta_{s_i,s_i}^{-1} \boldsymbol{e}_1}}$$

Achieves state of the art ϵ -accuracy in time complexity $\mathcal{O}\left(N\log^{2d}\left(\frac{N}{\epsilon}\right)\right)$ with $\mathcal{O}\left(N\log^{d}\left(\frac{N}{\epsilon}\right)\right)$ nonzero entries [Schäfer, Katzfuss, and Owhadi 2021]

Geometric dependence

Screening effect motivated by geometric considerations

Geometric dependence

Screening effect motivated by geometric considerations

Maximin ordering worse than random for spatial dimension ≥ 4

Nearest neighbors unclear for paths

Geometric dependence

Screening effect motivated by geometric considerations

Maximin ordering worse than random for spatial dimension ≥ 4

Nearest neighbors unclear for paths

Quick fix: correlation distance

$$\begin{split} \mathsf{dist}(p,q) &\coloneqq \sqrt{1-|\rho|} \\ \rho(p,q) &\coloneqq \frac{k(p,q)}{\sqrt{k(p,p)k(q,q)}} \end{split}$$

Towards geometry-free Cholesky factors

RPCholesky [Chen et al. 2023] + random ordering

RPCholesky + nearest neighbors + random candidate sets

Conditional selection sparsity pattern [Huan et al. 2023]

Automatic interpolation between low rank/sparse

Summary

Non-ergodic earthquake models with Gaussian processes

Efficient computation with sparse Cholesky factors

Implemented in Julia, scale to HPC/supercomputers

Project website and additional resources can be found at https://kolesky.cgdct.moe Thank you!

References I

- Chen, Yifan et al. (Feb. 2023). Randomly Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry Evaluations. DOI: 10.48550/arXiv.2207.06503. arXiv: 2207.06503 [cs, math, stat].
- Guinness, Joseph (Oct. 2018). "Permutation and Grouping Methods for Sharpening Gaussian Process Approximations". In: *Technometrics* 60.4, pp. 415–429. ISSN: 0040-1706, 1537-2723. DOI: 10.1080/00401706.2018.1437476. arXiv: 1609.05372 [stat].
- Huan, Stephen et al. (July 2023). Sparse Cholesky Factorization by Greedy Conditional Selection. DOI: 10.48550/arXiv.2307.11648. arXiv: 2307.11648 [cs,

math, stat].

References II

Lavrentiadis, Grigorios et al. (Aug. 2022). "Overview and Introduction to Development of Non-Ergodic Earthquake Ground-Motion Models". In: Bulletin of Earthquake Engineering. ISSN: 1573-1456. DOI: 10.1007/s10518-022-01485-x. Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi (Oct. 2021). "Sparse Cholesky Factorization by Kullback-Leibler Minimization". In: arXiv:2004.14455 [cs, math, stat]. arXiv: 2004.14455 [cs, math, stat]. Stein, Michael L. (Feb. 2002). "The Screening Effect in Kriging". In: The Annals of Statistics 30.1, pp. 298–323. ISSN: 0090-5364, 2168-8966, DOI: 10.1214/aos/1015362194,

Kernels on paths

Integral of a Matérn kernel $k(\boldsymbol{x}, \boldsymbol{x}')$

If $f\sim \mathcal{GP}(\mathbf{0},k)$, then define $\widetilde{f}=\int_0^1 f({\bm x}+t({\bm x}'-{\bm x}))\,\mathrm{d}t$

Linear transformation of a GP is also a GP

It has covariance

$$\widetilde{k}({m x},{m x}',{m y},{m y}') = \int_0^1 \int_0^1 k({m x}+t({m x}'-{m x}),{m y}+s({m y}'-{m y}))\,\mathrm{d}t\,\mathrm{d}s$$

which creates "paths" in the 2-d input space.