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Non-ergodic ground-motion models [Lavrentiadis et al. 2022]
estimate the probability an earthquake exceeds a fixed intensity

Ergodic refers to assumption of translation invariance
Gaussian process modeling provides uncertainty quantification

Seismic hazard at nuclear power plant locations
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Gaussian process regression

Given dataset D = {(z;, yi)}\,, learn residual y; = f(x;)
Gaussian process (GP) modeling f ~ GP(u(-), K(-,-))
Use closed-form posterior predictions

IE’[yPr ‘ yTr] = Mpr + @Pr,Tr@'Frl’Tr(yTr - /J'Tr)

—1
COV[yPr ‘ yTr] = 6Pr,Pr - 6Pr,TreTr’Tr@Tr,Pr

Direct computation scales as O(N?), limiting data size (10%)



Matérn kernel functions

Matérn family of kernels with smoothness v and length scale ¢

v = 1/2 corresponds to the exponential kernel 12 exp(—r/f)

v = 00 to the squared exponential kernel 12 exp(—r?2/(2¢2))




Kernel function

Use kernel

Cl(tE) + CQ(ts) + X363(tE, ts) + [AR . Cca(tC)] + W + 6B

where

c1 models earthquake interactions

¢o models site (receiver) interactions

X3 is the geometric scaling spreading

c3 models the interaction between earthquakes and sites
AR is a cell path distance array

Cca models cell-specific path attenuation

OW is a noise nugget

0B is noise shared within the same earthquake event



Modeling overview

Pick (parametric) class of kernel functions
Learn hyperparameters (MLE, full Bayesian, kernel flows, ...)

Make predictions
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What do we need?

(log-)Likelihood, posterior statistics

—2logn(y) = logdet(©) +y' O 1y + N log(2n)
IE:’[yPr ‘ yTr] = (_)Pr,Tr@'Frl’TryTr

COV[yPr ‘ yTr] = @Pr,Pr - @Pr,Tr@;rl’Tr@Tr,Pr
Log determinant, inversion
Accelerated with Cholesky factor © = LLT

Seek sparse Cholesky factor for dense covariance matrix
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Statistical Cholesky factorization

Cholesky factorization < iterative conditioning of process

L = chol(©71)
Lij  Covlyi,yj | Yr>jkzil

Lj; Var(y; | Yrsj ket

Conditional (near)-independence < (approximate) sparsity
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far away points are almost independent [Stein 2002]



Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points



Cholesky factorization recipe

Implied procedure for computing LLT ~ ©~!
1. Pick an ordering on the rows/columns of ©
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors
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Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,
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Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence
L = argmin Dk, (N(O, O) H N(o, (IALIALT)*l))
Les
Efficient and embarrassingly parallel closed-form solution
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Achieves state of the art e-accuracy in time complexity
@) (N log?? (%)) with O (N log? (%)) nonzero entries
[Schéfer, Katzfuss, and Owhadi 2021]
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Geometric dependence

Screening effect motivated by geometric considerations
Maximin ordering worse than random for spatial dimension > 4
Nearest neighbors unclear for paths

Quick fix: correlation distance

dist(p, q) == /1 —|p|
k(p,q)

o0 = k(p,p)k(q, q)



Towards geometry-free Cholesky factors

RPCholesky [Chen et al. 2023] 4+ random ordering
RPCholesky + nearest neighbors + random candidate sets
Conditional selection sparsity pattern [Huan et al. 2023]

Automatic interpolation between low rank/sparse



Summary

Non-ergodic earthquake models with Gaussian processes
Efficient computation with sparse Cholesky factors
Implemented in Julia, scale to HPC/supercomputers

Project website and additional resources can be found at


https://kolesky.cgdct.moe

Thank youl!
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Kernels on paths

Integral of a Matérn kernel k(x, x’)

If f ~ GP(0,k), then define f = [ f(a + t(x' —x))dt

Linear transformation of a GP is also a GP

It has covariance

_ 1,1

Mo w) = [ [ ka bt —a)y + sl - y)deds
o Jo

which creates “paths” in the 2-d input space.
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