
Sparse Cholesky Factorization by
Greedy Conditional Selection

Stephen Huan and Florian Schäfer

The problem: Gaussian process regression
Given measurements yTr at N points XTr, we wish to estimate unseen
data yPr at XPr. Estimation of yPr can be done by conditioning on yTr:

E[yPr | yTr] = µPr + ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr − ΘPr,TrΘ
−1
Tr,TrΘTr,Pr := ΘPr,Pr|Tr

Cubic bottleneck and the screening effect
Computing the conditional distribution has computational cost O(N 3),
which is infeasible for many points. Instead, exploit the screening effect:
conditional on nearby points, far away points have little correlation.

k-nearest neighbors?
The screening effect suggests that
one should simply pick the k closest
points, recovering the k-nearest
neighbors (k-NN) algorithm.

Here, the blue points are the
candidates, the orange point is the
unknown point, and the green
points are the k selected points
(in this example, k = 2).

k-NN is myopic, account for conditioning!
Algorithm [conditional k-nearest neighbors (Ck-NN)]:
Selecting the closest point every
iteration leads to redundancy.

Instead, select points conditional on
points already selected. Selecting
points by information instead of by
distance motivates conditional k-th
nearest neighbors (Ck-NN).

Greedy mutual information maximization
Greedily select the next training point with highest mutual information
with the target point. If I is the set of selected indices, select by:

argmax
j ̸∈I

Corr[yPr, yj | I]2

Efficient computation from Cholesky factor
A direct computation of the objective takes O(Nk4) to select k points.
This computational cost can be reduced to O(Nk2) by storing a partial
Cholesky factor, since each column is conditional on everything before it:

chol(Θ) =

(
Id 0

Θ2,1Θ
−1
1,1 Id

)(
chol(Θ1,1) 0

0 chol(Θ2,2 − Θ2,1Θ
−1
1,1Θ1,2)

)
Generalization to multiple prediction points
For multiple prediction points, the objective becomes to minimize the log
determinant of the conditional covariance matrix of prediction points. By
making use of the matrix determinant lemma, one can show that:

logdet(ΘPr,Pr|I,k)− logdet(ΘPr,Pr|I) = log
(
Θk,k|I,Pr

)
− log

(
Θk,k|I

)
We can efficiently compute the objective by storing two Cholesky factors,
yielding a complexity of O(Nk2 +Nm2 +m3) for m prediction points.

Global approximation by KL-minimization
Approximate a Gaussian process by a sparse approximate Cholesky factor
of its precision. Measure the resulting approximation accuracy by the KL
divergence between the corresponding centered Gaussian processes:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Using the optimal unique minimizer L from closed-form computation:

Lsi,i =
Θ−1

si,si
e1√

e⊤
1 Θ

−1
si,si

e1

Objective becomes minimize variance of ith point, conditional on selected!

DKL

(
Θ
∥∥ (LL⊤)−1

)
∝

N∑
i=1

[
log

(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]
Applying selection to Cholesky factorization
For a column in isolation, unknown
point is the diagonal entry, below it
are candidates, and add selected
entries to the sparsity pattern si.

However, for aggregated columns
(supernodes), a candidate can be
added between prediction points.
By careful application of rank-one
downdating, this structure can be
preserved at no additional cost.

Drop-in replacement for k-NN on MNIST

We classify an image by taking the
mode label in k selected images.
Ck-NN gives better accuracies on
the MNIST dataset for every k > 2.

0 10 20 30 40 50

0.8

0.85

0.9

Accuracy varying k

k-NN
Ck-NN

Recovery of sparse factors

Motivated by compressive sensing,
we generate sparse factors L to be
recovered from measurements LL⊤.
Ck-NN recovers L with near perfect
accuracy over varying densities.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Accuracy varying density

rand.
k-NNcorr.

Ck-NN

Better KL divergence with sparser factors

Plugging the selection algorithm
into Cholesky factorization leads to
better KL divergence for the same
number of nonzero entries as k-NN.

0 0.5 1 1.5
101

102

103

104

105

106

KL div. varying density

k-NN
k-NN (agg.)

Ck-NN
Ck-NN (agg.)

Preconditioning with conjugate gradient

Because minimizing KL divergence
minimizes the Kaporin condition
number, our method needs fewer
iterations of the conjugate gradient
to solve linear systems Θx = y.

0 10 20 30 40
10−7

10−5

10−3

10−1

101
103

Residual over iterations
k-NN

k-NN (agg.)
Ck-NN

Ck-NN (agg.)

