
Sparse Cholesky Factorization by
Greedy Conditional Selection

Stephen Huan

https://stephen-huan.github.io/projects/cholesky/

SIAM MDS22

https://stephen-huan.github.io/projects/cholesky/

Collaborators

Joe Guinness,
Cornell

Matthias Katzfuß,
Texas A&M

Houman Owhadi,
Caltech

Florian Schäfer,
Gatech

Overview

Introduction

Previous work

Conditional selection

Numerical experiments

Conclusion

The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K(xi,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)

Seek sparse Cholesky factor for dense covariance matrix

The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K(xi,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)

Seek sparse Cholesky factor for dense covariance matrix

The problem

Covariance matrices from pairwise kernel function evaluations

i.e. Θi,j = K(xi,xj) for points {xi}Ni=1 and kernel function K

Kernel trick in machine learning

Statistical inference in Gaussian processes on y ∼ N (0,Θ)

Seek sparse Cholesky factor for dense covariance matrix

Statistical Cholesky factorization

Factor covariance matrix Θ or precision matrix Q = Θ−1?

Θi,i = Var[yi] Q−1
i,i = Var[yi | yk ̸=i]

Θi,j = Cov[yi, yj]
−Qi,j√
Qi,iQj,j

= Corr[yi, yj | yk ̸=i,j]

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ) L = chol(Q)

Li,j =
Cov[yi, yj | yk<j]√

Var[yj | yk<j]
−Li,j

Lj,j
=

Cov[yi, yj | yk>j,k ̸=i]

Var[yj | yk>j,k ̸=i]

Conditional (near)-independence ⇔ (approximate) sparsity

Prefer precision matrix to attenuate density

Statistical Cholesky factorization

Factor covariance matrix Θ or precision matrix Q = Θ−1?

Θi,i = Var[yi] Q−1
i,i = Var[yi | yk ̸=i]

Θi,j = Cov[yi, yj]
−Qi,j√
Qi,iQj,j

= Corr[yi, yj | yk ̸=i,j]

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ) L = chol(Q)

Li,j =
Cov[yi, yj | yk<j]√

Var[yj | yk<j]
−Li,j

Lj,j
=

Cov[yi, yj | yk>j,k ̸=i]

Var[yj | yk>j,k ̸=i]

Conditional (near)-independence ⇔ (approximate) sparsity

Prefer precision matrix to attenuate density

Statistical Cholesky factorization

Factor covariance matrix Θ or precision matrix Q = Θ−1?

Θi,i = Var[yi] Q−1
i,i = Var[yi | yk ̸=i]

Θi,j = Cov[yi, yj]
−Qi,j√
Qi,iQj,j

= Corr[yi, yj | yk ̸=i,j]

Cholesky factorization ⇔ iterative conditioning of process

L = chol(Θ) L = chol(Q)

Li,j =
Cov[yi, yj | yk<j]√

Var[yj | yk<j]
−Li,j

Lj,j
=

Cov[yi, yj | yk>j,k ̸=i]

Var[yj | yk>j,k ̸=i]

Conditional (near)-independence ⇔ (approximate) sparsity

Prefer precision matrix to attenuate density

Cholesky factorization recipe

Implied procedure for computing LL⊤ ≈ Θ−1

1. Pick an ordering on the rows/columns of Θ
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d

(
N
ϵ

))
with O

(
N logd

(
N
ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d

(
N
ϵ

))
with O

(
N logd

(
N
ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥ N (0, (L̂L̂⊤)−1)
)

Efficient and embarrassingly parallel closed-form solution

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Achieves state of the art ϵ-accuracy in time complexity
O
(
N log2d

(
N
ϵ

))
with O

(
N logd

(
N
ϵ

))
nonzero entries

[Schäfer, Katzfuss, and Owhadi 2021]

Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points

Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point xi with largest distance ℓi to points selected before

The ith column selects all points within a radius of ρℓi from xi

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LL⊤)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]

KL ⇔ accumulated error over independent regression problems

Goal: minimize posterior variance of ith prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LL⊤)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]
KL ⇔ accumulated error over independent regression problems

Goal: minimize posterior variance of ith prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

DKL

(
Θ
∥∥∥ (LL⊤)−1

)
=

N∑
i=1

[
log
(
Θi,i|si\{i}

)
− log

(
Θi,i|i+1:

)]
KL ⇔ accumulated error over independent regression problems

Goal: minimize posterior variance of ith prediction point by
selecting training points si most informative to that point

Variance ⇔ mutual information ⇔ mean squared error

Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Conditional k-nearest neighbors

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Conditional selection

k-NN ν = 1
2

ν = 3
2 ν = 5

2

Greedy conditional selection

Intractable to search over
(
N
s

)
subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

Greedy conditional selection

Intractable to search over
(
N
s

)
subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

Greedy conditional selection

Intractable to search over
(
N
s

)
subsets, use greedy instead

Direct computation is O(Ns4) to select s points out of N

Maintain partial Cholesky factor for O(Ns2)

Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I,k = Θ:,:|I − uu⊤ u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2Pr =
Cov[yPr, yk | I]2

Var[yk | I]
= Var[yPr | I]Corr[yPr, yk | I]2

Compute u as next column of (partial) Cholesky factor

Replace O(N2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1L
⊤
k,:i−1

L:,i ←
L:,i√
Lk,i

Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I,k = Θ:,:|I − uu⊤ u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2Pr =
Cov[yPr, yk | I]2

Var[yk | I]
= Var[yPr | I]Corr[yPr, yk | I]2

Compute u as next column of (partial) Cholesky factor

Replace O(N2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1L
⊤
k,:i−1

L:,i ←
L:,i√
Lk,i

Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I,k = Θ:,:|I − uu⊤ u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2Pr =
Cov[yPr, yk | I]2

Var[yk | I]
= Var[yPr | I]Corr[yPr, yk | I]2

Compute u as next column of (partial) Cholesky factor

Replace O(N2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1L
⊤
k,:i−1

L:,i ←
L:,i√
Lk,i

Fast conditional selection
Selecting candidate k is rank-one downdate to covariance Θ

Θ:,:|I,k = Θ:,:|I − uu⊤ u =
Θ:,k|I√
Θk,k|I

Corresponding decrease in posterior variance is

u2Pr =
Cov[yPr, yk | I]2

Var[yk | I]
= Var[yPr | I]Corr[yPr, yk | I]2

Compute u as next column of (partial) Cholesky factor

Replace O(N2) update with O(Ns) by “left-looking”

L:,i ← Θ:,k − L:,:i−1L
⊤
k,:i−1

L:,i ←
L:,i√
Lk,i

k-nearest neighbors

Image classification by mode label of k-“nearest” neighbors

MNIST database of handwritten digits [Lecun et al. 1998]

Matérn kernel with smoothness ν = 3
2 and length scale ℓ = 210

0 10 20 30 40 50

0.8

0.85

0.9

k

A
cc

ur
ac

y
(%

)

0 10 20 30 40 50

0

0.5

1

1.5

k

T
im

e
(s

ec
on

ds
)

k-NN
Ck-NN

Recovery of sparse factors

Randomly generate a priori sparse Cholesky factor L

Attempt to recover L given covariance matrix Θ = LL⊤

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

N

A
cc

ur
ac

y
(I
O

U
)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

s

rand.
k-NN
corr.

Ck-NN

Cholesky factorization

Randomly sample N = 216 points uniformly from [0, 1]3

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1

2 4 6 8

103

104

105

106

ρ

lo
g
1
0

K
L

di
ve

rg
en

ce

101 102 103 104 105

103

104

105

106

log10 Time (seconds)

KL
KL (agg.)
k-NN
select

select (agg.)

Gaussian process regression
Randomly sample 216 points uniformly from [0, 1]3

Randomly partition into 90% training and 10% prediction

Matérn kernel with smoothness ν = 5
2 and length scale ℓ = 1

Draw 103 realizations from the resulting Gaussian process

2 4 6 8

10−5

10−4

10−3

10−2

10−1

100

ρ

lo
g
1
0

R
M

SE

101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

100

log10 Time (seconds)

KL
KL (agg.)

select
select (agg.)

Preconditioning the conjugate gradient
Randomly sample N points uniformly from [0, 1]3

Matérn kernel with smoothness ν = 1
2 and length scale ℓ = 1

First sample solution x ∼ N (0, IdN) then compute y = Θx

Run conjugate gradient with preconditioner L

0 10 20 30 40

10−7

10−5

10−3

10−1

101

103

Iterations

lo
g
1
0

R
es

id
ua

l∥
x
−
x
i∥

KL
KL (agg.)

select
select (agg.)

0 2 4 6

·104

0

50

100

N

N
on

ze
ro

s
pe

r
co

lu
m

n

Summary

Sparse Cholesky factorization of dense kernel matrices from
approximate conditional independence in Gaussian processes

Previous work exploits screening effect for ordering and sparsity

Replace pure geometry with information-theoretic criteria

More accurate factors at the same sparsity

Conditional selection is computationally efficient

Thank You!

References

Guinness, Joseph (Oct. 2018). “Permutation and Grouping
Methods for Sharpening Gaussian Process Approximations”. In:
Technometrics 60.4, pp. 415–429. ISSN: 0040-1706, 1537-2723.
DOI: 10.1080/00401706.2018.1437476. arXiv: 1609.05372
[stat].
Lecun, Y. et al. (Nov. 1998). “Gradient-Based Learning Applied
to Document Recognition”. In: Proceedings of the IEEE 86.11,
pp. 2278–2324. ISSN: 1558-2256. DOI: 10.1109/5.726791.
Schäfer, Florian, Matthias Katzfuss, and Houman Owhadi (Oct.
2021). “Sparse Cholesky Factorization by Kullback-Leibler
Minimization”. In: arXiv:2004.14455 [cs, math, stat]. arXiv:
2004.14455 [cs, math, stat].
Stein, Michael L. (Feb. 2002). “The Screening Effect in
Kriging”. In: The Annals of Statistics 30.1, pp. 298–323. ISSN:
0090-5364, 2168-8966. DOI: 10.1214/aos/1015362194.

https://doi.org/10.1080/00401706.2018.1437476
https://arxiv.org/abs/1609.05372
https://arxiv.org/abs/1609.05372
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2004.14455
https://doi.org/10.1214/aos/1015362194

Mutual information objective

Define mutual information or information gain

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increasing with log determinant of covariance

Information-theoretic EV-VE identity

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]

Orthogonal matching pursuit
Conditional selection can be seen as orthogonal matching
pursuit in covariance rather than feature space

Θ = F⊤F

where F ’s columns Fi are vectors in feature space and
Θi,j = ⟨Fi, Fj⟩

Suppose F has QR factorization
F = QR

for Q orthonormal and R upper triangular. Then
Θ = F⊤F = (QR)⊤(QR)

= R⊤Q⊤QR

= R⊤R

so R⊤ is a lower triangular Cholesky factor of Θ.

Multiple prediction points

Select candidate for multiple prediction points jointly

Try to take advantage of “two birds with one stone”

Flipped objective allows efficient algorithm by single selection

logdet(ΘPr,Pr|I,k)− logdet(ΘPr,Pr|I) = log(Θk,k|I,Pr)− log(Θk,k|I)

O(Ns2 +Nm2 +m3) to select s points out of N candidates
for m targets, essentially m times faster than single selection

Partial selection
In aggregated (supernodal) Cholesky factorization, “partial”
addition of candidates if candidate is between grouped targets

Conditional structure of partially conditioned covariance matrix

Cov[y∥k] =

(
L:pL

⊤
:p L:pL

′⊤
p+1:

L′
p+1:L

⊤
:p L′

p+1:L
′⊤
p+1:

)
=

(
L:p

L′
p+1:

)(
L:p

L′
p+1:

)⊤

Efficient inductive algorithm matches complexity of
multiple-target selection algorithm using rank-one downdating

Θi,i|:i−1 = L2
i,i

Θj,i|:i−1 = Lj,i · Li,i

Θi,i|:i−1,j = Θi,i|:i−1 −Θ2
j,i|:i−1/Θj,j|:i−1

Θj,j|:i−1,i = Θj,j|:i−1 −Θ2
j,i|:i−1/Θi,i|:i−1 = Θj,j|:i

Allocating nonzeros by global selection

It matters how many nonzeros each columns receives,
especially for inhomogeneous geometries

Distributing evenly maximizes computational efficiency

To maximize accuracy, maintain global priority queue that
determines both the next candidate to select and its column

Priority queue implemented as array-backed binary heap, e.g.

	Introduction
	Previous work
	Conditional selection
	Numerical experiments
	Conclusion
	References

