Sparse Cholesky Factorization by
Greedy Conditional Selection

Stephen Huan

https://stephen-huan.github.io/projects/cholesky/

SIAM MDS22

https://stephen-huan.github.io/projects/cholesky/

Collaborators

Joe Guinness, Matthias KatzfuB, Houman Owhadi, Florian Schafer,
Cornell Texas A&M Caltech Gatech

Introduction

Previous work

Conditional selection

Numerical experiments

Conclusion

Overview

The problem

Covariance matrices from pairwise kernel function evaluations

i.e. ©;; = K(x;,x;) for points {z;})¥, and kernel function K

The problem

Covariance matrices from pairwise kernel function evaluations
i.e. ©;; = K(x;,x;) for points {z;})¥, and kernel function K
Kernel trick in machine learning

Statistical inference in Gaussian processes on y ~ N (0,)

The problem

Covariance matrices from pairwise kernel function evaluations
i.e. ©;; = K(x;,x;) for points {z;})¥, and kernel function K
Kernel trick in machine learning

Statistical inference in Gaussian processes on y ~ N (0,)

Seek sparse Cholesky factor for dense covariance matrix

Statistical Cholesky factorization

Factor covariance matrix © or precision matrix Q = ©~17?

©i; = Var(y] Qi = Varlyi | yrzil
—Qi;

—=—=— = Corrlyi, y; | Yri,l

VQiiQjj s

Cholesky factorization < iterative conditioning of process

0;; = Cov[y;, y;]

L = chol(©) L = chol(Q)
 Covly, y; | Ykl Lij Covlyi,y; | Yr>jkil

J — -

Varly; | yr<;l Li; Var[y; | yksj ki)

Statistical Cholesky factorization

Factor covariance matrix © or precision matrix Q = ©~17?

©i; = Var(y] Qi = Varlyi | yrzil
—Qi;

—=—=— = Corrlyi, y; | Yri,l

VQiiQjj s

Cholesky factorization < iterative conditioning of process

0;; = Cov[y;, y;]

L = chol(©) L = chol(Q)
- Covlyi,y) | ye<y] _Lij _ Covlyi, yj | Yrsjkzti]
“ Varly; | yr<;] Ljj Varly; | yksjkzi]

Conditional (near)-independence < (approximate) sparsity

Statistical Cholesky factorization

Factor covariance matrix © or precision matrix Q = ©71?

©i; = Var(y] Qi = Varlyi | yrzil
—Qi;

—=—=— = Corrlyi, y; | Yri,l

VQiiQjj s

Cholesky factorization < iterative conditioning of process

0;; = Cov[y;, y;]

L = chol(©) L = chol(Q)

~_ Coviyi,yj | yr<yl ~Liy Coviyi yj | yr>jikeil
i, — =

! Varly; | yr<;] Lij Varly; | yesjrzil

Conditional (near)-independence < (approximate) sparsity

Prefer precision matrix to attenuate density

Cholesky factorization recipe

Implied procedure for computing LLT ~ ©~!
1. Pick an ordering on the rows/columns of ©
2. Select a sparsity pattern lower triangular w.r.t. ordering
3. Compute entries by minimizing objective over all factors

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence

L= argmin Dk1, (N(O, 0) H N(0, (lAllAlT)fl))
LeS

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence
L = argmin Dk, (N(O, O) H N(o, (IALIALT)*l))
Les
Efficient and embarrassingly parallel closed-form solution

—1 el

L. . — —_Susi 2
Siyi —

To—1
e; O5,.s.€1

Kullback-Leibler minimization

Compute entries by minimizing Kullback-Leibler divergence
L = argmin Dk, (N(O, O) H N(o, (IALIALT)*l))
Les
Efficient and embarrassingly parallel closed-form solution

-1
5. €1
[Si,Si
Sit — T —/—/——

To—1
e; O5,.s.€1

Achieves state of the art e-accuracy in time complexity
@) (N log?? (%)) with O (N log? (%)) nonzero entries
[Schéfer, Katzfuss, and Owhadi 2021]

Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Screening effect

Conditional on points near a point of interest,
far away points are almost independent [Stein 2002]

Suggests space-covering ordering and selecting nearby points

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to

The ith column selects all points within a radius of p/; from x;

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to

The ith column selects all points within a radius of p/; from x;

) i

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to

The ith column selects all points within a radius of p/; from x;

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to

The ith column selects all points within a radius of p/; from x;

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

T

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

o. . .. @

Ordering and sparsity pattern

(Reverse) maximin ordering [Guinness 2018] selects the next
point x; with largest distance ¢; to points selected before

The ith column selects all points within a radius of p¢; from =,

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

D (6 | (L2) = 3 ok (B (9) — 1o (B

—

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

Dy, (9 H (LLT)*I) = i [log (Gi,i|si\{i}) —log (@i,iliﬂz)]

—

KL < accumulated error over independent regression problems

This work: KL-minimization, revisited

Plug optimal L back into the KL divergence

Dy, (9 H (LLT)A) = g: [log (ei,i|si\{i}) —log (@i,iliﬂzﬂ

—

KL < accumulated error over independent regression problems

Goal: minimize posterior variance of ith prediction point by
selecting training points s; most informative to that point

Variance < mutual information < mean squared error

Conditional k-nearest neighbors

] . /—_—__-.-—_-.\
Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Conditional k-nearest neighbors

/—\

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points

Chooses redundant information

Conditional k-nearest neighbors

Sparse Gaussian process regression,

experimental design, active set, etc.

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

/—\

_______________..;———.\

Conditional k-nearest neighbors

/—\

Sparse Gaussian process regression,
experimental design, active set, etc.

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

Cholesky factorization by greedy selection

Identify target point as the diagonal entry, candidates are
below it, and add selected entries to the sparsity pattern

In practice, restrict candidate set to nearest neighbors, e.g.

ional selection

It

Cond

Greedy conditional selection

Intractable to search over (];[) subsets, use greedy instead

Greedy conditional selection

Intractable to search over (];[) subsets, use greedy instead

Direct computation is O(Ns?) to select s points out of N

Greedy conditional selection

Intractable to search over (];[) subsets, use greedy instead
Direct computation is O(Ns?) to select s points out of N

Maintain partial Cholesky factor for O(Ns?)

Fast conditional selection
Selecting candidate k is rank-one downdate to covariance ©
O. k1

NCITT,

G):,:|I,k = 6:7:|I - uuT u =

Fast conditional selection

Selecting candidate k is rank-one downdate to covariance ©
O. k1

NCITT,

Corresponding decrease in posterior variance is

G):,:|I,k = ®:,:|I - uuT u =

o Covlypr,yp | I)?

= _ I 9
Upr Var[yk | I] Var[ypr ’]Corr[ypr,yk | I]

Fast conditional selection

Selecting candidate k is rank-one downdate to covariance ©
O. k1

NEIT

Corresponding decrease in posterior variance is

G):,:|I,k: = ®:,:|I - uuT u =

W2 Covlypr, yx | I]?
P Varlyy, | 1]

= Var(yp, | I] Corr[ypr, yi | 1]

Compute u as next column of (partial) Cholesky factor

Fast conditional selection

Selecting candidate k is rank-one downdate to covariance ©
O. k1

NCITT,

Corresponding decrease in posterior variance is

G):,:|I,k: = ®:,:|I - uuT U=

W2 Covlypr, yx | I]?
P Varlyy, | 1]

= Var(yp, | I] Corr[ypr, yi | 1]

Compute u as next column of (partial) Cholesky factor

Replace O(N?) update with O(Ns) by “left-looking”

.
Li+©,—L. i1l 4

0

/L

L:,i <

k-nearest neighbors

Image classification by mode label of k-"nearest” neighbors
MNIST database of handwritten digits [Lecun et al. 1998]

Matérn kernel with smoothness v = % and length scale ¢ = 210

Accuracy (%)

1.5 = T
k-NN
0.9 -
Ck-NN
T 1r
0.85 s
S
2
g 05f
0.8 =
oL i
0 10 20 30 40 50 0 10 20 30 40 50

Recovery of sparse factors

Randomly generate a priori sparse Cholesky factor L

Attempt to recover L given covariance matrix © = LL T

1~ 1 -
5 P el
\ : -
08 it 1 08 1 -
— \ . et
3 Mot e
e o ke
S 06) 4 06F -
g
3 04l 4 04f -
g . rand.
E-NN
0.2 BT R e R P corr.
Ck-NN
ol ‘ ‘ ‘ ‘ ‘

‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1,000 07050 100 150 200 250
N s

Cholesky factorization

Randomly sample N = 216 points uniformly from [0, 1]?

Matérn kernel with smoothness v = g and length scale £ =1

KL
~o- KL (agg.)
k-NN
—m— select
- select (agg.)

108 F = 106 [T g

logo KL divergence

103 E

| | | | |
w0t 10 108 10t 10°
log,, Time (seconds)

Gaussian process regression

216 points uniformly from [0, 1]

Randomly sample
Randomly partition into 90% training and 10% prediction

Matérn kernel with smoothness v = % and length scale £ =1

Draw 103 realizations from the resulting Gaussian process

10° = 10° E KL E
B 5 : -o KL (agg.)
107 ¢ = 107t E -~ select
w)) £ : -0 select (agg.)
107° F = 1072F ! 4
2 P &o
b% 1073 - 103k § 4
<
1071 = 107t o E
“a..]
..
107° = 1070 F Ba o
| | | L= Eerl | | | |
2 4 6 8 10t 102 100 10t 108

log,, Time (seconds)

Preconditioning the conjugate gradient

Randomly sample N points uniformly from [0, 1]
Matérn kernel with smoothness v = % and length scale £ =1
First sample solution & ~ N(0,Idy) then compute y = Ox

Run conjugate gradient with preconditioner L

T
103 | KL . o

— - KL (agg. -

5 o KLlagg) ||y

P10 ‘ﬁ\h —=— select 4 E

8 o -0 select (agg.) 3

8 8 .

— 107t p o, 1% 0

g a

= w

5 50 |-

’ig 103 - § iog

S

& 1070 % |2
ol S ||

0 10 20 30 40 0 2 4 6
Iterations N .10%

Summary

Sparse Cholesky factorization of dense kernel matrices from
approximate conditional independence in Gaussian processes

Previous work exploits screening effect for ordering and sparsity
Replace pure geometry with information-theoretic criteria
More accurate factors at the same sparsity

Conditional selection is computationally efficient

Thank Youl

References

[§ Guinness, Joseph (Oct. 2018). “Permutation and Grouping
Methods for Sharpening Gaussian Process Approximations”.

10.1080/00401706.2018.1437476 1609.05372

[stat]

[3 Lecun, Y. et al (Nov. 1998). “Gradient-Based Learning Applied
to Document Recognition”.

10.1109/5.726791

ﬁ Schéfer, Florian, Matthias Katzfuss, and Houman Owhadi (Oct.
2021). “Sparse Cholesky Factorization by Kullback-Leibler
Minimization”.
2004.14455 [cs, math, stat]

[Stein, Michael L. (Feb. 2002). “The Screening Effect in
Kriging'.

10.1214/a0s/1015362194

https://doi.org/10.1080/00401706.2018.1437476
https://arxiv.org/abs/1609.05372
https://arxiv.org/abs/1609.05372
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2004.14455
https://doi.org/10.1214/aos/1015362194

Mutual information objective

Define mutual information or information gain
Lypr; y1e] = Hlyp:] — Hypr | y1]
Entropy increasing with log determinant of covariance

Information-theoretic EV-VE identity

Aﬂ[’ypr} + H[yPH yTr}
Var[yp,| = + Var[E[yp, | y7]]

Orthogonal matching pursuit
Conditional selection can be seen as orthogonal matching
pursuit in covariance rather than feature space
O=F'F
where F's columns F; are vectors in feature space and
©ij = (Fi, Fj)
Suppose F' has QR factorization
F=QR
for () orthonormal and R upper triangular. Then
©=F'F=(QR) (QR)
=R'Q'QR
=R'R

so R is a lower triangular Cholesky factor of ©.

Multiple prediction points

Select candidate for multiple prediction points jointly
Try to take advantage of “two birds with one stone”

Flipped objective allows efficient algorithm by single selection

logdet(Opy pri1,1) — logdet(Opy prir) = 10g(O k|1,pr) — 10g(O k1)

O(Ns? + Nm? 4+ m3) to select s points out of N candidates
for m targets, essentially m times faster than single selection

Partial selection

In aggregated (supernodal) Cholesky factorization, “partial”
addition of candidates if candidate is between grouped targets

Conditional structure of partially conditioned covariance matrix

T T
C _ LIPLL Lileerl: _ Lip Lip
vyl = 1| , T 7 /T =\ /
L p+1:L;p L p+1:L p+1: L p+1: L p+1:

Efficient inductive algorithm matches complexity of
multiple-target selection algorithm using rank-one downdating

_ T2
Oiij:ic1 = Li;
Ojipi—1 = Lyji- Li;
_ 2
9i,i|:i—l,j - @i,i‘:i—l - @j7i|;i_1/@j,j|:i—l

_ 2 _
Ojjli-1i = ©jj1i-1 = OF45—1/Ouisi—1 = Oy jl.i

Allocating nonzeros by global selection

It matters how many nonzeros each columns receives,
especially for inhomogeneous geometries

Distributing evenly maximizes computational efficiency

To maximize accuracy, maintain global priority queue that
determines both the next candidate to select and its column

Priority queue implemented as array-backed binary heap, e.g.

	Introduction
	Previous work
	Conditional selection
	Numerical experiments
	Conclusion
	References

