Fast Gaussian process regression by Greedy Conditional Selection

Stephen Huan Florian Schäfer

Short \& Sweet seminar
April 22, 2022

The problem: Gaussian process regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

The problem: Gaussian process regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}
Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}

The problem: Gaussian process regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}
Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}

Model as Gaussian process
\rightarrow condition on $\boldsymbol{y}_{\mathrm{Tr}}$

Cubic bottleneck

Closed-form conditional distribution:

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \operatorname{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid \mathrm{Tr}}:=\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Cubic bottleneck

Closed-form conditional distribution:

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \operatorname{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid \mathrm{Tr}}:=\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Kernel function $K(\cdot, \cdot): \Theta_{i, j}:=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

Cubic bottleneck

Closed-form conditional distribution:

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]=\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \operatorname{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid \mathrm{Tr}}:=\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]=\Theta_{\mathrm{Pr}, \operatorname{Pr}}-\Theta_{\mathrm{Pr}, \operatorname{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}} \\
\text { Kernel function } K(\cdot, \cdot): \Theta_{i, j}:=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \\
\text { Computational cost scales as } N^{3}
\end{aligned}
\end{aligned}
$$

Screening effect

"Screening effect"

Screening effect

"Screening effect"

Choose k most informative points

Conditional k-th nearest neighbors

Naive: select k closest points

Conditional k-th nearest neighbors

Naive: select k closest points
Chooses redundant information

Conditional k-th nearest neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Conditional k-th nearest neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Mutual information

Mutual information or information gain:

$$
\mathrm{I}\left[\boldsymbol{y}_{\mathrm{Pr}} ; \boldsymbol{y}_{\mathrm{Tr}}\right]=\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}}\right]-\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]
$$

Mutual information

Mutual information or information gain:

$$
\mathrm{I}\left[\boldsymbol{y}_{\mathrm{Pr}} ; \boldsymbol{y}_{\mathrm{Tr}}\right]=\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}}\right]-\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]
$$

Entropy increases with log determinant of covariance

Mutual information

Mutual information or information gain:

$$
\mathrm{I}\left[\boldsymbol{y}_{\mathrm{Pr}} ; \boldsymbol{y}_{\mathrm{Tr}}\right]=\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}}\right]-\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]
$$

Entropy increases with log determinant of covariance

Information-theoretic EV-VE identity:

$$
\begin{aligned}
\mathrm{H}\left[\boldsymbol{y}_{\mathrm{Pr}}\right] & =\mathrm{H}\left[y_{\mathrm{Pr}} \mid y_{\mathrm{Tr}}\right]+\mathrm{I}\left[\boldsymbol{y}_{\mathrm{Pr}} ; \boldsymbol{y}_{\mathrm{Tr}}\right] \\
\operatorname{Var}\left[\boldsymbol{y}_{\mathrm{Pr}}\right] & =\mathrm{E}\left[\operatorname{Var}\left[y_{\mathrm{Pr}} \mid y_{\mathrm{Tr}}\right]\right]+\operatorname{Var}\left[\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right]\right]
\end{aligned}
$$

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Criterion simplifies to:

$$
\underset{j \notin I}{\operatorname{argmax}} \frac{\Theta_{j, \operatorname{Pr} \mid I}^{2}}{\Theta_{j, j \mid I}}
$$

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Criterion simplifies to:

$$
\underset{j \notin I}{\operatorname{argmax}} \frac{\Theta_{j, \operatorname{Pr} \mid I}^{2}}{\Theta_{j, j \mid I}}
$$

Direct computation: $\mathcal{O}\left(N k^{4}\right)$

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Criterion simplifies to:

$$
\underset{j \notin I}{\operatorname{argmax}} \frac{\Theta_{j, \operatorname{Pr} \mid I}^{2}}{\Theta_{j, j \mid I}}
$$

Direct computation: $\mathcal{O}\left(N k^{4}\right)$

Storing a partial Cholesky factor: $\mathcal{O}\left(N k^{2}\right)$

Conditioning as rank-one update

Key idea: assume we have $\Theta_{\mid I}$, rank-one update to $\Theta_{\mid I \cup\{k\}}$

$$
\begin{aligned}
\Theta_{:,: \mid I \cup\{k\}} & =\Theta_{:,: \mid I}-\Theta_{:, k \mid I} \Theta_{k, k \mid I}^{-1} \Theta_{k,: \mid I} \\
\boldsymbol{u} & =\frac{\Theta_{:, k \mid I}}{\sqrt{\Theta_{k, k \mid I}}} \\
\Theta_{\mid I \cup\{k\}} & =\Theta_{\mid I}-\boldsymbol{u} \boldsymbol{u}^{\top}
\end{aligned}
$$

Efficient computation from Cholesky factor

Statistical interpretation of Cholesky factorization:

$$
\begin{aligned}
\operatorname{chol}(\Theta) & =\left(\begin{array}{cc}
I & 0 \\
\Theta_{2,1} \Theta_{1,1}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{1,1}\right) & 0 \\
0 & \operatorname{chol}\left(\Theta_{2,2}-\Theta_{2,1} \Theta_{1,1}^{-1} \Theta_{1,2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{1,1}\right) & 0 \\
\Theta_{2,1} \operatorname{chol}\left(\Theta_{1,1}\right)^{-\top} & \operatorname{chol}\left(\Theta_{2,2}-\Theta_{2,1} \Theta_{1,1}^{-1} \Theta_{1,2}\right)
\end{array}\right)
\end{aligned}
$$

Efficient computation from Cholesky factor

Statistical interpretation of Cholesky factorization:

$$
\begin{aligned}
\operatorname{chol}(\Theta) & =\left(\begin{array}{cc}
I & 0 \\
\Theta_{2,1} \Theta_{1,1}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{1,1}\right) & 0 \\
0 & \operatorname{chol}\left(\Theta_{2,2}-\Theta_{2,1} \Theta_{1,1}^{-1} \Theta_{1,2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{1,1}\right) & 0 \\
\Theta_{2,1} \operatorname{chol}\left(\Theta_{1,1}\right)^{-\top} & \operatorname{chol}\left(\Theta_{2,2}-\Theta_{2,1} \Theta_{1,1}^{-1} \Theta_{1,2}\right)
\end{array}\right)
\end{aligned}
$$

Store partial Cholesky factor L

$$
L_{i}=\frac{\Theta_{:, k \mid: i}}{\sqrt{\Theta_{k k \mid: i}}}
$$

Algorithm

Indices I, select k, i th iteration, have:
Conditional covariances $\Theta_{:, \operatorname{Pr} \mid I}$
Conditional variances $\operatorname{diag}\left(\Theta_{:,, \mid I}\right)$
First $i-1$ columns of L

Algorithm

Indices I, select k, i th iteration, have:
Conditional covariances $\Theta_{:, \operatorname{Pr} \mid I}$
Conditional variances $\operatorname{diag}\left(\Theta_{:,, \mid I}\right)$
First $i-1$ columns of L

Update L

$$
L_{:, i} \leftarrow \Theta_{:, k}-L_{:,: i-1} L_{k,: i-1}^{\top}
$$

Algorithm

Indices I, select k, i th iteration, have:
Conditional covariances $\Theta_{:, \operatorname{Pr} \mid I}$
Conditional variances $\operatorname{diag}\left(\Theta_{:,, \mid I}\right)$
First $i-1$ columns of L

Update L

$$
L_{:, i} \leftarrow \Theta_{:, k}-L_{:,: i-1} L_{k,: i-1}^{\top}
$$

Update conditional values for candidate j

$$
\begin{aligned}
\Theta_{j j \mid I \cup\{k\}} & \leftarrow \Theta_{j j \mid I}-L_{j, i}^{2} \\
\Theta_{j, \operatorname{Pr} \mid I \cup\{k\}} & \leftarrow \Theta_{j, \operatorname{Pr} \mid I}-L_{j, i} L_{\mathrm{Pr}, i}
\end{aligned}
$$

Extending to multiple prediction points

Objective conditional log determinant of prediction points

$$
\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)=\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}-\frac{\Theta_{\operatorname{Pr}, k \mid I} \Theta_{\operatorname{Pr}, k \mid I}^{\top}}{\Theta_{k k \mid I}}\right)
$$

Extending to multiple prediction points

Objective conditional log determinant of prediction points

$$
\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)=\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I}-\frac{\Theta_{\mathrm{Pr}, k \mid I} \Theta_{\mathrm{Pr}, k \mid I}^{\top}}{\Theta_{k k \mid I}}\right)
$$

By the matrix determinant lemma,

$$
\begin{aligned}
& =\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}\right)+\log \left(1-\frac{\Theta_{\mathrm{Pr}, k \mid I}^{\top} \Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}^{-1} \Theta_{\mathrm{Pr}, k \mid I}}{\Theta_{k k \mid I}}\right) \\
& =\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}\right)+\log \left(\frac{\Theta_{k k \mid I}-\Theta_{k, \operatorname{Pr} \mid I} \Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I}^{-1} \Theta_{\mathrm{Pr}, k \mid I}}{\Theta_{k k \mid I}}\right)
\end{aligned}
$$

Extending to multiple prediction points

Objective conditional log determinant of prediction points

$$
\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)=\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I}-\frac{\Theta_{\mathrm{Pr}, k \mid I} \Theta_{\mathrm{Pr}, k \mid I}^{\top}}{\Theta_{k k \mid I}}\right)
$$

By the matrix determinant lemma,

$$
\begin{aligned}
& =\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}\right)+\log \left(1-\frac{\Theta_{\mathrm{Pr}, k \mid I}^{\top} \Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}^{-1} \Theta_{\mathrm{Pr}, k \mid I}}{\Theta_{k k \mid I}}\right) \\
& =\operatorname{logdet}\left(\Theta_{\mathrm{Pr}, \mathrm{Pr} \mid I}\right)+\log \left(\frac{\Theta_{k k \mid I}-\Theta_{k, \operatorname{Pr} \mid I} \Theta_{\mathrm{Pr}, \operatorname{Pr} \mid I}^{-1} \Theta_{\mathrm{Pr}, k \mid I}}{\Theta_{k k \mid I}}\right)
\end{aligned}
$$

By the quotient rule, we combine the conditioning:

$$
=\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}\right)+\log \left(\frac{\Theta_{k k \mid I, \operatorname{Pr}}}{\Theta_{k k \mid I}}\right)
$$

Algorithm for multiple prediction points

Final objective simplifies to:

$$
\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)-\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}\right)=\log \left(\frac{\Theta_{k k \mid I, \operatorname{Pr}}}{\Theta_{k k \mid I}}\right)
$$

Algorithm for multiple prediction points

Final objective simplifies to:

$$
\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)-\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}\right)=\log \left(\frac{\Theta_{k k \mid I, \operatorname{Pr}}}{\Theta_{k k \mid I}}\right)
$$

Store two factors (one for numerator, one for denominator)

Algorithm for multiple prediction points

Final objective simplifies to:

$$
\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)-\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}\right)=\log \left(\frac{\Theta_{k k \mid I, \operatorname{Pr}}}{\Theta_{k k \mid I}}\right)
$$

Store two factors (one for numerator, one for denominator)
"Pre-condition" numerator factor on prediction points

$$
\Theta_{k k \mid I, \mathrm{Pr}}=\Theta_{k k \mid \mathrm{Pr}, I}
$$

Algorithm for multiple prediction points

Final objective simplifies to:

$$
\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I \cup\{k\}}\right)-\operatorname{logdet}\left(\Theta_{\operatorname{Pr}, \operatorname{Pr} \mid I}\right)=\log \left(\frac{\Theta_{k k \mid I, \operatorname{Pr}}}{\Theta_{k k \mid I}}\right)
$$

Store two factors (one for numerator, one for denominator)
"Pre-condition" numerator factor on prediction points

$$
\Theta_{k k \mid I, \mathrm{Pr}}=\Theta_{k k \mid \mathrm{Pr}, I}
$$

Complexity of $\mathcal{O}\left(N k^{2}+N m^{2}+m^{3}\right)$ for m prediction points

Global approximation by KL-minimization

Approximate GP by sparse Cholesky factor of its precision

Global approximation by KL-minimization

Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:

$$
L:=\underset{\hat{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Global approximation by KL-minimization

Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:

$$
L:=\underset{\hat{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Using the optimal unique minimizer L from closed form:

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Global approximation by KL-minimization

Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:

$$
L:=\underset{\hat{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Using the optimal unique minimizer L from closed form:

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Minimize variance of i th point, conditional on selected!

$$
2 \mathbb{D}_{\mathrm{KL}}=\sum_{i=1}^{N}\left[\log \left(\Theta_{i i \mid s_{i}-\{i\}}\right)-\log \left(\Theta_{i i \mid i+1:}\right)\right]
$$

Cholesky factorization by selection

Apply column-wise directly

Cholesky factorization by selection

Apply column-wise directly

Improves approx. algorithm of ${ }^{1}$

Cholesky factorization by selection

Apply column-wise directly
Improves approx. algorithm of ${ }^{1}$

${ }^{1}$ F. Schäfer, M. Katzfuss, and H. Owhadi, "Sparse Cholesky factorization by Kullback-Leibler minimization," arXiv preprint arXiv:2004.14455, 2020

GP regression by Cholesky factorization

Lower triangular factor for precision: $L L^{\top}=\Theta^{-1}$

GP regression by Cholesky factorization

Lower triangular factor for precision: $L L^{\top}=\Theta^{-1}$
Upper triangular factor for covariance: $L^{-\top} L^{-1}=\Theta$

GP regression by Cholesky factorization

Lower triangular factor for precision: $L L^{\top}=\Theta^{-1}$
Upper triangular factor for covariance: $L^{-\top} L^{-1}=\Theta$
$U=L^{-\top}$, look at submatrices:

$$
\begin{aligned}
\Theta & =U U^{\top}=\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right)\left(\begin{array}{cc}
U_{11}^{\top} & 0 \\
U_{12}^{\top} & U_{22}^{\top}
\end{array}\right) \\
& =\left(\begin{array}{cc}
U_{11} U_{11}^{\top}+U_{12} U_{12}^{\top} & U_{12} U_{22}^{\top} \\
U_{22} U_{12}^{\top} & U_{22} U_{22}^{\top}
\end{array}\right) \\
U_{22} & =\operatorname{chol}\left(\Theta_{22}\right) \\
U_{12} & =\Theta_{12} U_{22}^{-\top} \\
U_{11} & =\operatorname{chol}\left(\Theta_{11 \mid 2}\right)
\end{aligned}
$$

GP regression by Cholesky factorization

Write conditional terms:

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =\Theta_{12} \Theta_{22}^{-1} \boldsymbol{y}_{2} \\
& =U_{12} U_{22}^{-1} \boldsymbol{y}_{2} \\
\operatorname{Cov}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =\Theta_{11}-\Theta_{12} \Theta_{22}^{-1} \Theta_{21} \\
& =U_{11} U_{11}^{\top}
\end{aligned}
$$

GP regression by Cholesky factorization

Write conditional terms:

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =\Theta_{12} \Theta_{22}^{-1} \boldsymbol{y}_{2} \\
& =U_{12} U_{22}^{-1} \boldsymbol{y}_{2} \\
\operatorname{Cov}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =\Theta_{11}-\Theta_{12} \Theta_{22}^{-1} \Theta_{21} \\
& =U_{11} U_{11}^{\top}
\end{aligned}
$$

Recall: $U=L^{-\top}$ so $U L^{\top}=L^{\top} U=I$

$$
\begin{array}{r}
\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right)\left(\begin{array}{cc}
L_{11}^{\top} & L_{21}^{\top} \\
0 & L_{22}
\end{array}\right)=\left(\begin{array}{cc}
L_{11}^{\top} & L_{21}^{\top} \\
0 & L_{22}^{\top}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right)=I \\
\left(\begin{array}{cc}
U_{11} L_{11}^{\top} & U_{11} L_{21}^{\top}+U_{12}^{\top} L_{22}^{\top} \\
0 & U_{22} L_{22}^{\top}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)=I \\
\left(\begin{array}{cc}
L_{11}^{\top} U_{11} & L_{11}^{\top} U_{12}+L_{21}^{\top} U_{22} \\
0 & L_{22}^{\top} U_{22}
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right)=I
\end{array}
$$

GP regression by Cholesky factorization

Reading from submatrices,

$$
\begin{aligned}
& U_{11}=L_{11}^{-\top} \\
& U_{22}=L_{22}^{-\top} \\
& U_{12}=-L_{11}^{-\top} L_{21}^{\top} L_{22}^{-\top}
\end{aligned}
$$

GP regression by Cholesky factorization

Reading from submatrices,

$$
\begin{aligned}
& U_{11}=L_{11}^{-\top} \\
& U_{22}=L_{22}^{-\top} \\
& U_{12}=-L_{11}^{-\top} L_{21}^{\top} L_{22}^{-\top}
\end{aligned}
$$

Re-write conditional terms:

$$
\begin{aligned}
\mathrm{E}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =U_{12} U_{22}^{-1} \boldsymbol{y}_{2} \\
& =\left(-L_{11}^{-\top} L_{21}^{\top} L_{22}^{-\top}\right) L_{22}^{\top} \boldsymbol{y}_{2} \\
& =-L_{11}^{-\top} L_{21}^{\top} \boldsymbol{y}_{2} \\
\operatorname{Cov}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] & =U_{11} U_{11}^{\top} \\
& =L_{11}^{-\top} L_{11}^{-1} \\
\boldsymbol{e}_{i}^{\top} \operatorname{Cov}\left[\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}\right] \boldsymbol{e}_{j} & =\left(L_{11}^{-1} \boldsymbol{e}_{i}\right)^{\top}\left(L_{11}^{-1} \boldsymbol{e}_{j}\right)
\end{aligned}
$$

Summary

Selection algorithm for Gaussian process regression

Drop-in replacement for k-th nearest neighbors

Leverage GP regression for sparse Cholesky factorization

Leverage Cholesky factorization for GP regression

Thank you!

