

Georgia Institute of Technology

The problem: Gaussian process regression

Given measurements y_{Tr} at N points X_{Tr} , we wish to estimate unseen data y_{Pr} at X_{Pr} . Estimation of y_{Pr} can be done as conditioning on y_{Tr} :

 $E[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \boldsymbol{\mu}_{\mathsf{Pr}} + \Theta_{\mathsf{Pr},\mathsf{Tr}} \Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1} (\boldsymbol{y}_{\mathsf{Tr}} - \boldsymbol{\mu}_{\mathsf{Tr}})$ $\Theta_{\mathsf{Pr},\mathsf{Pr}|\mathsf{Tr}} := \operatorname{Cov}[\boldsymbol{y}_{\mathsf{Pr}} \mid \boldsymbol{y}_{\mathsf{Tr}}] = \Theta_{\mathsf{Pr},\mathsf{Pr}} - \Theta_{\mathsf{Pr},\mathsf{Tr}}\Theta_{\mathsf{Tr},\mathsf{Tr}}^{-1}\Theta_{\mathsf{Tr},\mathsf{Pr}}$

Cubic bottleneck and the screening effect

Computing conditional distribution has computational cost $\mathcal{O}(N^3)$, often infeasible! Use "screening": conditional on nearby points, far points have little covariance.

k-th nearest neighbors?

The screening effect suggests that one should simply pick the k closest points, recovering the k-th nearest neighbors (k-NN) algorithm.

Here, the blue points are the candidates, the orange point is the unknown point, and the green points are the k selected points (in this example, k = 2).

k-NN is myopic, account for conditioning! Algorithm: [conditional k-th nearest neighbors (Ck-NN)]:

Selecting the closest point every iteration leads to redundancy.

Instead, select points *conditional* on points already selected. Selecting points by *information* instead of by distance motivates conditional k-th nearest neighbors (Ck-NN).

Greedy mutual information maximization

Greedily select the next training point with highest mutual information with the target point. If I is the set of selected indices, select by:

 $I = I \cup \left\{ \operatorname{argmax}_{j \notin I} \frac{\Theta_{j,\mathsf{Pr}|I}^2}{\Theta_{j,j|I}} \right\}$

Sparse Cholesky Factorization by Greedy Conditional Selection

Stephen Huan and Florian Schäfer

$$\cosh(\Theta_{2,2} - \Theta_{2,1}\Theta_{1,1}^{-1}\Theta_{1,2})$$

$$(\mathbf{Pr}_{\mathbf{r},\mathbf{Pr}|I}) = \log\left(\frac{\Theta_{kk|I,\mathbf{Pr}}}{\Theta_{kk|I}}\right)$$

$$\left| \mathcal{N}(\mathbf{0}, (\hat{L}\hat{L}^{\top})^{-1}) \right)$$

l=1

We classify an image by taking the mode label in k selected images. Ck-NN gives better accuracies on the MNIST dataset for every k > 2.

Recovery of sparse factors

We generate random sparse Cholesky factors by randomly selecting a prescribed number of nonzero entries per column. Ck-NN is able to recover the underlying sparse factor given its covariance with high accuracy.

Better KL divergence with sparser factors

Plugging the selection algorithm into Cholesky factorization leads to better KL divergence for the same number of nonzero entries as k-NN.

Preconditioning with conjugate gradient

Because the KL divergence strongly penalizes zero eigenvalues of the preconditioned matrix $L\Theta L^T$, the condition number is improved, resulting in less iterations with the conjugate gradient.

