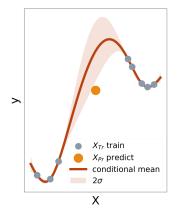
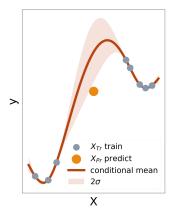

Sparse Cholesky Factorization by Greedy Conditional Selection

Stephen Huan Florian Schäfer


Georgia Institute of Technology

February 19, 2022

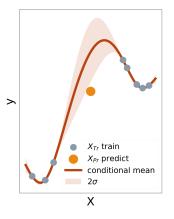
Measurements $\boldsymbol{y}_{\mathsf{Tr}}$ at N points X_{Tr}


Estimate unseen data y_{Pr} at X_{Pr}

Measurements $\boldsymbol{y}_{\mathsf{Tr}}$ at N points X_{Tr}

Estimate unseen data y_{Pr} at X_{Pr}

Model as Gaussian process ightarrow condition on $oldsymbol{y}_{\mathsf{Tr}}$

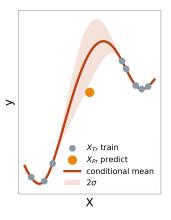


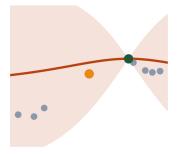
Measurements $\boldsymbol{y}_{\mathsf{Tr}}$ at N points X_{Tr}

Estimate unseen data $m{y}_{\mathsf{Pr}}$ at X_{Pr}

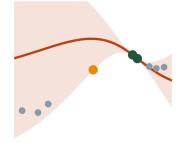
Model as Gaussian process ightarrow condition on $oldsymbol{y}_{\mathsf{Tr}}$

Computational cost scales as N^3


Measurements $\boldsymbol{y}_{\mathsf{Tr}}$ at N points X_{Tr}

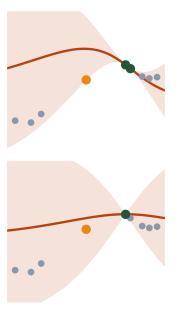

Estimate unseen data $m{y}_{\mathsf{Pr}}$ at X_{Pr}

Model as Gaussian process ightarrow condition on $oldsymbol{y}_{\mathsf{Tr}}$


Computational cost scales as N^3

Choose k most informative points!

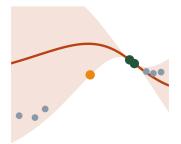
Naive: select k closest points

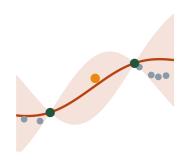

Naive: select k closest points

Chooses redundant information

Naive: select k closest points

Chooses redundant information

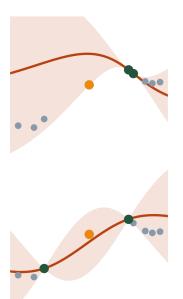

Maximize mutual information!



Naive: select k closest points

Chooses redundant information

Maximize mutual information!

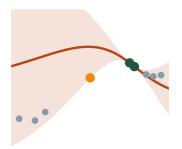


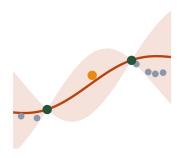
Naive: select k closest points

Chooses redundant information

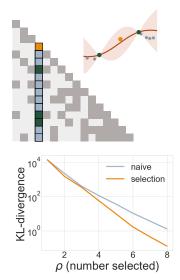
Maximize mutual information!

Direct computation: $\mathcal{O}(Nk^4)$


Naive: select k closest points

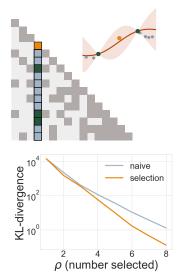

Chooses redundant information

Maximize mutual information!


Direct computation: $\mathcal{O}(Nk^4)$

Store Cholesky factor $\rightarrow \mathcal{O}(Nk^2)!$

Cholesky Factorization by Selection

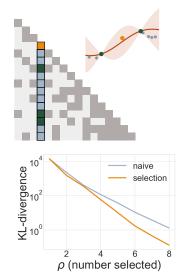


Apply column-wise \rightarrow sparse approx. of GP

Cholesky Factorization by Selection

Apply column-wise \rightarrow sparse approx. of GP

Maximum mutual information \rightarrow minimum KL-divergence



Cholesky Factorization by Selection

Apply column-wise \rightarrow sparse approx. of GP

 $\begin{array}{l} {\sf Maximum mutual information} \\ \rightarrow {\sf minimum KL-divergence} \end{array}$

Improves approx. algorithm of ¹

¹F. Schäfer, M. Katzfuss, and H. Owhadi, "Sparse Cholesky factorization by Kullback-Leibler minimization," *arXiv preprint arXiv:2004.14455*, 2020